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A u n i t a r y t rans format ion is appl ied to the E-e J a h n - T e l l e r problem. T h e eigenfunctions 
of the diagonal par t of the t r a n s f o r m e d H a m i l t o n i a n are uti l ized for a R i t z diagonal izat ion 
procedure. R e s u l t s are g i v e n for basic sets of 1 2 , 20 and 42 funct ions and compared with the 
respect ive conventional ca lculat ions . I n the t r a n s f o r m e d picture the e x a c t results are approached 
in a d i f ferent manner t h a n in the original one a n d thus the re l iabi l i ty of the numerical work is 
improved . 

1. Introduction 

In dynamical Jahn-Teller (J.T.) systems the 
conventional Born-Oppenheimer approximation 
breaks down and a non-adiabatic calculation has 
to be done. Numerical efforts in this direction have 
been undertaken by Longuet-Higgins [1], Uehara 
[2] and others. In these approaches the non-
adiabatic Hamiltonian is projected onto the eigen-
basis of the decoupled part of the total Hamiltonian. 
The secular equation then is solved numerically. 
However, calculations of this kind only lead to a 
restricted physical insight. It is therefore highly 
desirable to study analytical approaches. 

Furthermore, the Jahn-Teller problem has the 
peculiarity that in the strong coupling limit 
energetically far-distant states (~ x2) remain 
coupled, if the eigenbasis of the decoupled Hamil-
tonian is chosen for the numerical procedure. 
Hence, if the number of basis functions is not 
chosen exceedingly high, there is some uncertainty 
about the results. Therefore, there is a need for 
numerical results which follow from the use of an 
alternative choice of basis. 

One of us (Wagner [3]) has shown that by means 
of an exponential transformation the Hamiltonian 
H can be brought to a form of improved diago-
nality H. In this paper we will employ this trans-
formation for a definition of a modified set of basis 
functions to be used in a diagonalization procedure. 
It is the purpose of this paper to compare these 
results with those found by means of the conven-
tional basis. Several different choices are made for 
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the number of functions in the respective basic 
sequences. We calculate the energy levels and the 
Ham factors for the E-e system. 

2. The Jahn-Teller E-e system 
We confine ourselves to the linear E-e J.-T. 

case, which is found in a trigonal or hexagonal 
surrounding. Here a doubly degenerate electronic 
state interacts with a doubly degenerate vibrational 
mode. The Hamiltonian reads (h = 1) * 

H = Q (ai+ ai + a2+ a2) + co (&i+ h + b2+ b2) 
+ x{{ai+a1 — a2+a2)(b2-\-b2+) (1) 
+ (ai+a2 + a2+a1) (61 + 61+)}. 

The bi+, bi are oscillator creation and annihilation 
operators, whereas the may be taken as 
either electronic or excitonic creation and annihi-
lation operators. Q is the electron and co the phonon 
energy, x is the electron phonon coupling parameter 
with the dimension of an energy. The electron 
dynamics of this E-e J.-T. system is characterized 
by an SU(2) algebra, which can be completely 
described by the following Hermitian operators: 

A - ai+ ai + a2+ «2 = 1, 
B = «i+ a\ — a2+ a2 , (2a—d) 
C = ai+a2 + a2+«i, 
D = i (ai+ «2 — a2+ a\). 

3. Nonlinear Canonical Transformation 
In earlier work [3] it has been found that the 

E-e Jahn-Teller Hamiltonian may be made "more 

* I n contrast to the notat ion of W a g n e r [3] the indices 
for the b-operators h a v e been interchanged. This , in v i e w 
of group-theoretical t ransformat ions , is the correct nota-
t ion, b u t is of no re levance in our calculations. 
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diagonal" by means of a unitary exponential trans-
formation of the form 

U = e*s, S — («i+ «i — a2+ a2) (b2 — b2+) 

+ {ai+a2 + a2+ai)(&i — &i+), 
A = x/co . (3) 

The transformed Hamiltonian can be written in the 
closed form [3] 

U-1 HU = H = [Q - o) A2) (ai+ ax + a2+ o2) 
+ co(bl+bl + b2+b2) + 3nA (4) 

with 
~ (4 V)n{ß2 + y2)n 

Hnd = 4OJ A3 2 
n = 0 (2^ + 3)! 

(2w + 2)(S - 2T) 

M = 0 

(4A2)w(ß2 + y2)» 
(2w + 2)! 

• ( 2 w + 2 U ) , 

U = iD{bi+ b2-b2+ bx), 

T = [By — C ß) (&i+ b2 — b2+ b\), 

ß = b2 — b2+, y — bi — &i+ . 

(5) 

(6a) 
(6b) 
(6c) 

We choose the eigenfunctions of the diagonal part 
of ß as the basis for a Ritz variational procedure, 

( 6 i + r (&2+r 0> (7) ^nx\\/n2\ 

= |»;wi,»2>. * = 1»2, raj = 0, 1,2,3, . . . . 

This leads to the secular equation for the eigen-
values E of the Hamiltonian (4): 
det [Rlnl n2, mi t mt — E • dij • dni > mi • dn2; TOi] = 0 , (8) 

where H1^ n2 TOl m2 are the matrix elements 

(i;ni,n2\H\ j; m\, wi2>; 

their evaluation is given in Appendix A. To approx-
imate the exact solution we successively use 
different finite sets of basis functions. Simul-
taneously we calculate the problem in the original 
picture, as done by Longuet-Higgins, with respec-
tively the same number of basis functions as in the 
transformed space. The numerical results of both 
treatments are drawn in Figs. 1 to 5. 

4. H a m factors 

Let us denote the lowest two eigenfunctions by 
tfi and xp2. They are doubly degenerate and in the 

transformed space they are given by 
yi — (exp XS)tp\, ip2= (exp A S) ip2 . 

By definition the Ham (Ham [4]) factors are given 
by 

q = <n\B\n> = <n\B\n> > ( 9 a ) 

V = i <V21DI yi> = i (xpi I DI Vi> » (9b) 
where 

B y2 — C ß y 
B = e-AS B e*s = B + 

• (cosh 2x — 1) — i 

C = e-M Ce*s = C + 

ß2 + y2 
Dy 

(cosh 2x — 1) + i —j 

VF+P 
C ß2 - Bßy 

ß2 + y2 

Dß 

sinh 2x 

Vß2 + y2 
sinh 2x , 

F i g . 1 . E i g e n v a l u e s of the E - e - p r o b l e m . A = x/co is the 
coupling s t rength . Diagonal izat ion wi th a basic sequence 
of 1 2 funct ions . original picture , trans-
formed picture . 
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D = D e*s = D cosh 2x 
By-Cß 

x = X yß2 + y2 . (10) 

Computations may be checked by the exact relation 
(Ham [4]) 

2q-p = l. (11) 

We have established our variational procedure in 
such a manner that both the eigenvalues and eigen-
vectors of H and H are evaluated simultaneously. 
It is thus straightforward to calculate also the Ham 
factors. The results are given in Figure 6. We 
mention that the Ham factors as calculated with 
the 2 "bare" ground-state wave-functions of the 
diagonal part of the transformed Hamiltonian (4) 
have been given in an earlier communication 
(Sigmund, Wagner, Birkhold [5]). 

F i g . 2 . E i g e n v a l u e s of the £ - e - p r o b l e m . / = x/co is the 
coupling s trength. Diagonal izat ion with a basic sequence 
of 20 funct ions . original picture, trans-
f o r m e d picture . 

F i g . 3 . E i g e n v a l u e of the ^ - e - p r o b l e m . A = x/a> is the 
coupling strength. Diagonal izat ion wi th a bas ic sequence 
of 42 funct ions . original picture, trans-
formed picture. 

5. Conclusion 

In each of the Figs. 1 to 3 the results for a fixed 
set of basis functions are given both for the original 
and the transformed Hamiltonian. For small 
coupling constants (2. ^ 0.5) the results in the 
transformed picture are the better ones which one 
would expect, since the transformation yields an 
exact diagonalization in the small coupling limit. 
For the groundstate and a choice up to 20 basis 
functions the "transformed" diagonalization (TD) 
is better than the "original" one (OD) in the whole 
coupling region. 

A characteristic feature of the comparison of 
both diagonalization procedures is displayed in 
Fig. 5, where the first excited state ("one-phonon-
state") is considered. It is realized that for any 
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given number of basis function the TD-results 
remain closer together and are enveloped by the 
2 OD-curves. For the yli(2-states the OD is better 
than the TD, whereas for the E-state the TD is 
almost (perhaps even strictly) exact. 

Another remarkable result of the TS is exhibited 
in Figure 4. It is numerically found that the 
EW-state over the whole coupling region practically 
does not depend on the number of basis functions 
within the fundamental set. One therefore could 
suspect that for this particular state the exponential 
transformation yields an exact eigenstate. But this 
suspicion has not been verified analytically. 

For the Ham factors the comparison of both 
diagonalization procedures also yields an interesting 
characteristic property. It is generally found that in 
the OD the Ham-factors are approached from 
above and in the TD from below. 

In conclusion it cannot be generally stated that 
in the strong coupling limit the TD procedure is 
more accurate than the OD, although this is true 

F i g . 4. E igenva lues of the jEJ-e-problem. X = xjaj is the 
coupling strength. Diagonal izat ion a f te r per forming an 
exponentia l t rans format ion wi th an increasing extension 
of the basic sequence. 6 basic funct ions , 20 
basis funct ions, 42 basis funct ions . 
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F i g . 5 . One-phonon states of the 2?-e-problem. A = x/oj 
is the coupling strength. Diagonal izat ion in the original 
picture and a f te r apply ing the exponent ia l t r a n s f o r m a -
tions g iven in the tex t . or iginal p icture , 

t rans formed picture. The n u m b e r s which are 
a t tached to the single curves denote the respect ive n u m b e r 
of funct ions in the basic sequence. 
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F i g . 6. H a m factors for the .E-e-problem. X = x/u> is the 
coupling strength. I n the original p icture the final result 
is approached f rom above , in the t r a n s f o r m e d p icture 
f r o m below. 6 basis funct ions , 20 bas is 
funct ions , 42 basis funct ions. 
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for specific states. However, the main value of the numerical observation that in a calculation within 
calculation in the transformed space lies in the fact the transformed frame some particular states are 
that the exact result is approached in a different given with much higher accuracy than others, may 
manner than within the conventional diagonaliza- serve as a guide to discuss and possibly improve the 
tion procedure. Hence, both procedures can be used exponential transformation itself. 
to cheque each other and to establish in this way a 
state of reliability which the conventional procedure . . Appendix A * does not have in view of the coupling of far-distant 
states. On the other hand, the comparison of Evaluation of the Matrix Elements HlJl Tl2 mi m2 
numerical results as presented in this note and the W e firgt perform the integration over the 

electronic space, 

<i;ni,n2\U\j; mi,m2> = < 5 * , / — co A2 + co) <5ni>Wl • <5rt2)j 

~ (4A2)»(2to + 1) 
- 2 c o P I ,9 \_9M ' 1 ^ + y2)n\m 1, m2> (A.l) 

+ 4co A» ( - 1 )<+i J ' ' , < n i , n21 (ß2 + y 2 ) " (ß - 2 y (ftx+ b2 - b2+ h)) | m x m 2 > 
n=o n-ro)i j 

r oo (4^2)W(2w + 1) 
+ (1 - <M ( - 1)« 4co A2 2 ,L , on <W1' 712 I + y2)n &2+ - &2) I m i m2> 

[ n=0 

~ (4A2)ra(2^ + 2) , , 1 
+ 4 w 2 /o i o\ t < w i > 1 (£2 + r2)n (r + 2 ß & 2 - & 2 + I ' m2> • 

w = 0 ^ w + o j ! J 

Applying the respective operators 
ß -2y{b1+b2-b2+b1), b1+b2-b1+b2 and y + 2ß{h+ b2 - b2+ 6i) 

the remaining matrix elements in (A.l) may all be brought to the form n (n\ 
M = <wi,w2|(ß2 + y2)w|mi,m2> = 2 <n1|/52»-2»|OTl><W2|y2»|m2>. (A.2) 

m = 0 \m>] 

The remaining integrals (ji11 ß2n-2m | a n ( j 1 y2m | m2y d0 n o t disappear only if respectively n\ and 
mi or n2 and m2 are either both even or both odd. Using this and 

\/(n + 2v)l (21)! » 2* 
<n(b - 6+)2i » + 2*> = <» + 2v (6 - &+)«»> = KV \ ( - 1/2)«(- - -

+ 1)(Z - + 2) •••(/- 1 ) - / . (A.3) 

and performing the summation over m for n2 = n\ + 2 v, m2 = mi -f- 2 /j we get 
i f = <wi, w21 iß* + y2)« | m + 2 v, + 2ju> 

= |/wi + 1 ]/nx + 2 • • • ym + 2v -]/n2 + 1 + 2 ••• + 2/u • (-2)»-ro! ( - 1)"+" 
^ / to \/»A/n 2\ (2v + 2 x - 1 ) ! ! (2^ + 2 ^ - 1 ) ! ! 

' A Ä V + ft + * + j J U / \ * / (2v + x)!(2/W + /)! ' ( A , 4 ) 
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