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A unitary transformation is applied to the E—e Jahn-Teller problem. The eigenfunctions
of the diagonal part of the transformed Hamiltonian are utilized for a Ritz diagonalization
procedure. Results are given for basic sets of 12, 20 and 42 functions and compared with the
respective conventional calculations. In the transformed picture the exact results are approached
in a different manner than in the original one and thus the reliability of the numerical work is

improved.

1. Introduection

In dynamical Jahn-Teller (J.T.) systems the
conventional Born-Oppenheimer approximation
breaks down and a non-adiabatic calculation has
to be done. Numerical efforts in this direction have
been undertaken by Longuet-Higgins [1], Uehara
[2] and others. In these approaches the non-
adiabatic Hamiltonian is projected onto the eigen-
basis of the decoupled part of the total Hamiltonian.
The secular equation then is solved numerically.
However, calculations of this kind only lead to a
restricted physical insight. It is therefore highly
desirable to study analytical approaches.

Furthermore, the Jahn-Teller problem has the
peculiarity that in the strong coupling limit
energetically far-distant states (~x%2) remain
coupled, if the eigenbasis of the decoupled Hamil-
tonian is chosen for the numerical procedure.
Hence, if the number of basis functions is not
chosen exceedingly high, there is some uncertainty
about the results. Therefore, there is a need for
numerical results which follow from the use of an
alternative choice of basis.

One of us (Wagner [3]) has shown that by means
of an exponential transformation the Hamiltonian
H can be brought to a form of improved diago-
nality H. In this paper we will employ this trans-
formation for a definition of a modified set of basis
functions to be used in a diagonalization procedure.
It is the purpose of this paper to compare these
results with those found by means of the conven-
tional basis. Several different choices are made for
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the number of functions in the respective basic
sequences. We calculate the energy levels and the
Ham factors for the £ —e system.

2. The Jahn-Teller E-e system

We confine ourselves to the linear E-e J.-T.
case, which is found in a trigonal or hexagonal
surrounding. Here a doubly degenerate electronic
state interacts with a doubly degenerate vibrational
mode. The Hamiltonian reads (A =1) *

H = Q (a1t a1 + as* as) + w (b1 by + bat by)
+ % {(a1* a1 — az* ag) (b2 + b2*) (1)
+ (@1t a2 + a2t ay) (b1 + b11)}.

The b;*, b; are oscillator creation and annihilation
operators, whereas the a;*,a; may be taken as
either electronic or excitonic creation and annihi-
lation operators. 2 is the electron and w the phonon
energy. x is the electron phonon coupling parameter
with the dimension of an energy. The electron
dynamics of this E-e J.-T. system is characterized
by an SU(2) algebra, which can be completely
described by the following Hermitian operators:
A=ata1+ataz=1,
B=ai1ta; —astas, (2a—d)
C=a1taz +as*ay,
D = i(a1+ as — a2+d1) g

3. Nonlinear Canonical Transformation

In earlier work [3] it has been found that the
E—-e¢ Jahn-Teller Hamiltonian may be made “more

* In contrast to the notation of Wagner [3] the indices
for the b-operators have been interchanged. This, in view
of group-theoretical transformations, is the correct nota-
tion, but is of no relevance in our calculations.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift fir Naturforschung
@ @ @ in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Férderung der
BY ND Wissenschaften e.V. digitalisiert und unter folgender Lizenz veréffentlicht:
Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland
Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift
fur Naturforschung in cooperation with the Max Planck Society for the
Advancement of Science under a Creative Commons Attribution-NoDerivs
3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der
Creative Commons Lizenzbedingung ,Keine Bearbeitung*“) beabsichtigt,
um eine Nachnutzung auch im Rahmen zukiinftiger wissenschaftlicher
Nutzungsformen zu ermdéglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal
of the Creative Commons License condition “no derivative works”). This is
to allow reuse in the area of future scientific usage.



668

diagonal”’ by means of a unitary exponential trans-
formation of the form

U=¢e*, S=(a1ta; — as™ag)(bg — bat)
+ (@17 a2 4 ax* a1) (by — b1¥),

l=xlw. 3)

The transformed Hamiltonian can be written in the
closed form [3]
U-1HU = H= (2 — w22 (a1 a1 + as* as)
+ w (b1 by + bat be) + Hya (4)
with
oo 412
Hnd =4w 3 Z

n=0

“(2n +2)(S

(% + y2)"
(2n+3)!
—27)
oo 412 ﬂ2+y
"ZO 2n+2)!
“(2n+1)(4 +20),

(4)

U=1D(b1* bz — b2*b1), (6a)
T = (By —CpB)(b1+bs — b2t b1), (6b)
B=0b2—bet, y=>b1—bit. (6¢)

We choose the eigenfunctions of the diagonal part
of A as the basis for a Ritz variational procedure,

(b +)n1 (b +)7l2
" "i/hf!'[/ffg 10 e

1=1,2,

~ -
Pny,ne = Ai

:|i;n1,n2>, nj:O,1,2,3,....
This leads to the secular equation for the eigen-
values E of the Hamiltonian (4):

det [Hnl nz, M, me —E- 61.1 ' 6n1,ml : 6nz,mz] =0, (8)

where HY) .., ... m, are the matrix elements

CGiymy,mg|H|j;my, me);

their evaluation is given in Appendix A. To approx-
imate the exact solution we successively use
different finite sets of basis functions. Simul-
taneously we calculate the problem in the original
picture, as done by Longuet-Higgins, with respec-
tively the same number of basis functions as in the
transformed space. The numerical results of both
treatments are drawn in Figs. 1 to 5.

4. Ham factors

Let us denote the lowest two eigenfunctions by
y1 and y2. They are doubly degenerate and in the
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transformed space they are given by
Y1=(expA8)y1, Y2 =(expAS)y.

By definition the Ham (Ham [4]) factors are given
by

¢ = <y1| Blyp = 1| B|po>, (9a)
p =1 {yz| D|y1) =i <{p2| D| 1>, (9b)
where
By2—Cpy
B—C_ASBCAS_B+4ﬂ2+);2*"
(cosh 2z — 1) — i —27 sinh 2
-(cosh2x — 1) — 4 ———-—sinh 2z,
VB +»? '
_ Cp:— BBy
C=e?0erMS =0+ —1— iy restes
Dp
-(cosh2x — 1) + 72— ﬂ2+ th2x
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Fig. 1. Eigenvalues of the E-e-problem. A=zx/w is the
coupling strength. Diagonalization with a basic sequence
of 12 functions. ——-—— original picture, — trans-
formed picture.
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D = ¢S D e*S = D cosh 2z
+4 %(;Tﬁ sinh 2z,
=AY+ 2. (10)
Computations may be checked by the exact relation
(Ham [4])
2¢—p=1. (11)

We have established our variational procedure in
such a manner that both the eigenvalues and eigen-
vectors of H and H are evaluated simultaneously.
It is thus straightforward to calculate also the Ham
factors. The results are given in Figure 6. We
mention that the Ham factors as calculated with
the 2 “bare” ground-state wave-functions of the
diagonal part of the transformed Hamiltonian (4)
have been given in an earlier communication
(Sigmund, Wagner, Birkhold [5]).
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Fig. 2. Eigenvalues of the E-e-problem. A=x/w is the
coupling strength. Diagonalization with a basic sequence
of 20 functions. ————— original picture, trans-
formed picture.
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Fig. 3. Eigenvalue of the E—e-problem. A=x/w is the
coupling strength. Diagonalization with a basic sequence
of 42 functions. ————— original picture, trans-
formed picture.

5. Conclusion

In each of the Figs. 1 to 3 the results for a fixed
set of basis functions are given both for the original
and the transformed Hamiltonian. For small
coupling constants (1=0.5) the results in the
transformed picture are the better ones which one
would expect, since the transformation yields an
exact diagonalization in the small coupling limit.
For the groundstate and a choice up to 20 basis
functions the “transformed” diagonalization (TD)
is better than the ‘“‘original’’ one (OD) in the whole
coupling region.

A characteristic feature of the comparison of
both diagonalization procedures is displayed in
Fig. 5, where the first excited state (“one-phonon-
state’’) is considered. It is realized that for any
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given number of basis function the TD-results
remain closer together and are enveloped by the
2 OD-curves. For the 4; s-states the OD is better
than the TD, whereas for the E-state the TD is
almost (perhaps even strictly) exact.

Another remarkable result of the TS is exhibited
in Figure 4. It is numerically found that the
EM)-state over the whole coupling region practically
does not depend on the number of basis functions
within the fundamental set. One therefore could
suspect that for this particular state the exponential
transformation yields an exact eigenstate. But this
suspicion has not been verified analytically.

For the Ham factors the comparison of both
diagonalization procedures also yields an interesting
characteristic property. It is generally found that in
the OD the Ham-factors are approached from
above and in the TD from below.

In conclusion it cannot be generally stated that
in the strong coupling limit the TD procedure is
more accurate than the OD, although this is true
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Fig. 4. Eigenvalues of the E-e-problem. A=x/w is the
coupling strength. Diagonalization after performing an
exponential transformation with an increasing extension
of the basic sequence. ————— 6 basic functions, - - - - 20
basis functions, 42 basis functions.
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Fig. 5. One-phonon states of the E-e-problem. A=x/w
is the coupling strength. Diagonalization in the original
picture and after applying the exponential transforma-
tions given in the text. original picture,
transformed picture. The numbers which are
attached to the single curves denote the respective number
of functions in the basic sequence.

Fig. 6. Ham factors for the E-e-problem. A=x/w is the
coupling strength. In the original picture the final result
is approached from above, in the transformed picture
from below. ————— 6 basis functions, ----- 20 basis
functions, 42 basis functions.
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for specific states. However, the main value of the
calculation in the transformed space lies in the fact
that the exact result is approached in a different
manner than within the conventional diagonaliza-
tion procedure. Hence, both procedures can be used
to cheque each other and to establish in this way a
state of reliability which the conventional procedure
does not have in view of the coupling of far-distant
states. On the other hand, the comparison of
numerical results as presented in this note and the
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numerical observation that in a calculation within
the transformed frame some particular states are
given with much higher accuracy than others, may
serve as a guide to discuss and possibly improve the
exponential transformation itself.

Appendix A:

Evaluation of the Matrix Elements HY. .. . ma

We first perform the integration over the
electronic space,

<i;n1,n2]ﬁ|j;m1, m2> — 6i,j {(Q = w}'2+ CU) am,mx : 6nz,ma

2 (423" (2n + 1)
—2023, @n+2)!

n=0

+wdf =1 ZO 2nL3)!

+ (1 —6,) {(— )ido 2>
n=0

oo 2\n

oS @Rt

n=0

(2n+3)!
Applying the respective operators

{ny,ma| (B2 + y2)*|my, ma)
= (422)"(2n + 2)

(A.1)

{my,mz| (B2 + p2)n (B — 2y (b1t ba — bat b1)) | ma mz>}

2 (442" (2n + 1)
@2n+2)!

{ny,n2| (B2 + p2)(by bat — b1t ba) | my mao)

——<my, na| (B2 + p2)n(y + 2B (b1t ba — bt bl))|m1,m2>} .

B—2y(b1tba — b2t b1), bitba—bitbs and y -+ 2B(b1tba — bat b1)

the remaining matrix elements in (A.1) may all be brought to the form

M= <n1 . ’ngl (ﬂz -+ ‘yz)n l my, WL2> = éo (:;) {m | ﬂ2n—2m | m1> <n2 | yZm I m2> . (A2)

The remaining integrals {n; | f2#-2m|m;) and <{nz|y2™|msz) do not disappear only if respectively n; and
my or ng and mg are either both even or both odd. Using this and

s B Y(n+2v)! (20! & 2%
{n(b—bt)2tm + 29y =<n + 29| (b — b+)2l ny = n T (—1/2)1(—2);0m
l—rv—+1)(l—v—n+2)---(1I—1)-1. (A.3)
and performing the summation over m for ng = n; + 29, ma = m1 + 2u we get
M = {ny,ma| (B2 4 y2)"|n1 + 29, m2 + 2p)
:Vn1+1|/n1—]—2-'-]/n1+2v-]/n2—{—1]/n2+2---l/n2+2/4-(—2)"-n!(—~1)"+l‘
mo ne n n1\ [n2\ (2v + 22 — )11 (2pu + 21— 1)!!
: . A4
Zogo(wwwl)(u)(l) @+l @u+ D) e
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